A substantial portion of human respiratory tract infection is thought to be transmitted via contaminated hand contact with the mouth, eyes, and/or nostrils. Thus, a key risk factor for infection transmission should be the rate of hand contact with these areas termed target facial membranes. A study was conducted in which 10 subjects were each videotaped for 3 hr while performing office-type work in isolation from other persons. The number of contacts to the eyes, nostrils, and lips was scored during subsequent viewing of the tapes. The total contacts per subject had sample mean x = 47 and sample standard deviation s = 34. The average total contact rate per hour was 15.7. The authors developed a relatively simple algebraic model for estimating the dose of pathogens transferred to target facial membranes during a defined exposure period. The model considers the rate of pathogen transfer to the hands via contact with contaminated environmental surfaces, and the rate of pathogen loss from the hands due to pathogen die-off and transfer from the hands to environmental surfaces and to target facial membranes during touching. The estimation of infection risk due to this dose also is discussed. A hypothetical but plausible example involving influenza A virus transmission is presented to illustrate the model.