The N-terminal caspase cleavage in the nucleoprotein (NP) of influenza A virus is correlated with the host origin of the virus, thus could be a molecular determinant for host range. We studied how mutations targeting the NP cleavage motif of human and avian influenza viruses affect virus replication in vitro and in vivo. The "avian-like" D(16)-->G substitution in the NP, which makes this protein resistant to cleavage, did not significantly affect the human A/Puerto Rico/8/34 (H1N1) virus replication in vitro but decreased the lethality of this virus in mice by 68-fold. Gene incompatibility contributed to the attenuated phenotype of the reassortant A/Puerto Rico/8/34 virus with avian NP derived from A/Teal/Hong Kong/w312/97 (H6N1) virus in vitro and in vivo. Insertion of the "human-like" G(16)-->D mutation into avian NP, which resulted in susceptibility to caspase cleavage, did not rescue virulence, but made the reassortant virus even more attenuated. Introducing the human-like G(16)-->D substitution into the NP of highly pathogenic A/Vietnam/1203/04 (H5N1) virus decreased lethality in mice. We confirmed that position 16, which associated with the N-terminal caspase cleavage of the NP, is important for optimal virus fitness in vitro and in vivo. An avian-like mutation at position 16 in the NP of human virus as well as a human-like substitution at this residue in avian NP both resulted in virus attenuation.