Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice

Influenza virus-infected cells undergo apoptosis and become susceptible to phagocytosis by macrophages in vitro, and this leads to the propagation of the virus being inhibited. We previously showed that inhibitors of phagocytosis increased the rate of mortality among influenza virus-infected mice. However, the mode of the phagocytosis of influenza virus-infected cells in vivo has not been investigated. We, in this study, assessed this issue by histochemically analyzing bronchoalveolar lavage cells and lung tissue obtained from C57BL/6 mice infected with influenza A/WSN (H1N1) virus. Both neutrophils and macrophages accumulated in the lung soon after the viral challenge, and either type of cell was capable of phagocytosing influenza virus-infected, apoptotic cells. Changes in the level of phagocytosis and the amount of virus in lung tissue roughly correlated with each other. Furthermore, alveolar macrophages prepared from influenza virus-infected mice showed greater phagocytic activity than those from uninfected mice. The phagocytic activity of macrophages was stimulated in vitro by a heat-labile substance(s) released from influenza virus-infected cells undergoing apoptosis. These results suggested that the level of phagocytosis is augmented both quantitatively and qualitatively in the lung of influenza virus-infected animals so that infected cells are effectively eliminated. Finally, lack of TLR4 caused an increase in the rate of mortality among influenza virus-challenged mice and a decrease in the level of phagocytosis of apoptotic cells in the lung. TLR4 could thus play an important role in the host defense against influenza by positively regulating the phagocytic elimination of infected cells.