Avian Influenza: Lessons from Past Outbreaks and an Inventory of Data Sources, Mathematical and AI Models, and Early Warning Systems for Forecasting and Hotspot Detection to Tackle Ongoing Outbreaks

Background/Objectives: The ongoing avian influenza (H5N1) outbreak, one of the most widespread and persistent in recent history, has significantly impacted public health and the poultry and dairy cattle industries. This review covers lessons from past outbreaks, risk factors for transmission, molecular epidemiology, clinical features, surveillance strategies, and socioeconomic impacts. Since 1997, H5N1 has infected over 900 individuals globally, with a fatality rate exceeding 50%. Key factors influencing infection rates include demographic, socioeconomic, environmental, and ecological variables. The virus’s potential for sustained human-to-human transmission remains a concern. The current outbreak, marked by new viral clades, has complicated containment efforts. Methods: This review discusses how to integrate technological advances, such as mathematical modeling and artificial intelligence (AI), to improve forecasting, hotspot detection, and early warning systems. Results: We provide inventories of data sources, covering both conventional and unconventional data streams, as well as those of mathematical and AI models, which can be vital for comprehensive surveillance and outbreak responses. Conclusion: In conclusion, integrating AI, mathematical models, and technological innovations into a One-Health approach is essential for improving surveillance, forecasting, and response strategies to mitigate the impacts of the ongoing avian influenza outbreak. Strengthening international collaboration and biosecurity measures will be pivotal in controlling future outbreaks and protecting both human and animal populations from this evolving global threat.