Mapping of the influenza A virus genome RNA structure and interactions reveals essential elements of viral replication

Influenza A virus (IAV) represents a constant public health threat. The single-stranded, segmented RNA genome of IAV is replicated in host cell nuclei as a series of 8 ribonucleoprotein complexes (vRNPs) with RNA structures known to exert essential function to support viral replication. Here, we investigate RNA secondary structures and RNA interactions networks of the IAV genome and construct an in vivo structure model for each of the 8 IAV genome segments. Our analyses reveal an overall in vivo and in virio resemblance of the IAV genome conformation but also wide disparities among long-range and intersegment interactions. Moreover, we identify a long-range RNA interaction that exerts an essential role in genome packaging. Disrupting this structure displays reduced infectivity, attenuating virus pathogenicity in mice. Our findings characterize the in vivo RNA structural landscape of the IAV genome and reveal viral RNA structures that can be targeted to develop antiviral interventions.