Disease outbreaks can drastically disturb the environment of surviving animals, but the behavioural, ecological, and epidemiological consequences of disease-driven disturbance are poorly understood. Here, we show that an outbreak of High Pathogenicity Avian Influenza Virus (HPAIV) coincided with unprecedented short-term behavioural changes in Northern gannets (Morus bassanus). Breeding gannets show characteristically strong fidelity to their nest sites and foraging areas (2015-2019; n = 120), but during the 2022 HPAIV outbreak, GPS-tagged gannets instigated long-distance movements beyond well-documented previous ranges and the first ever recorded visits of GPS-tagged adults to other gannet breeding colonies. Our findings suggest that the HPAIV outbreak triggered changes in space use patterns of exposed individuals that amplified the epidemiological connectivity among colonies and may generate super-spreader events that accelerate disease transmission across the metapopulation. Such self-propagating transmission from and towards high density animal aggregations may explain the unexpectedly rapid pan-European spread of HPAIV in the gannet.