SARS-CoV-2 and Influenza A virus Co-infections in Ferrets

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and seasonal influenza viruses are co-circulating in the human population. However, only a few cases of viral co-infection with these two viruses have been documented in humans with some people having severe disease and others mild disease. In order to examine this phenomenon, ferrets were co-infected with SARS-CoV-2 and human seasonal influenza A viruses (IAVs) (H1N1 or H3N2) and were compared to animals that received each virus alone. Ferrets were either immunologically na?ve to both viruses or vaccinated with the 2019-2020 split-inactivated influenza virus vaccine. Co-infected naive ferrets lost significantly more body weight than ferrets infected with each virus alone and induced more severe inflammation in both the nose and lungs than ferrets single-infected with each virus. Co-infected na?ve animals had predominantly higher IAV titers than SARS-CoV-2 titers, and IAVs efficiently transmitted to the co-housed ferrets by direct contact. Comparatively, SARS-CoV-2 failed to transmit to the ferrets that co-housed with co-infected ferrets by direct contact. Moreover, vaccination significantly reduced IAVs virus titers and shortened the viral shedding, but did not completely block influenza virus direct contact transmission. Notably, vaccination significantly ameliorated the influenza associated disease by protecting vaccinated animals from severe morbidity after IAV single infection or IAV and SARS-CoV-2 co-infection, suggesting that seasonal influenza virus vaccination is pivotal to prevent severe disease induced by IAVs and SARS-CoV-2 co-infection during the COVID-19 pandemic. Importance Influenza A viruses cause severe morbidity and mortality during each influenza virus season. The emergence of SARS-CoV-2 infection in the human population offers the opportunity to potential co-infections of both viruses. The development of useful animal models to asses pathogenesis, transmission, and viral evolution of these viruses as the co-infect a host is of critical importance for the development of vaccines and therapeutics. The ability to prevent the most severe effects of viral co-infections can be studied using effect co-infection ferret models described in this report.