Globally, outbreaks of Avian Influenza Virus (AIV) in poultry continue to burden economies and endanger human, livestock and wildlife health. Wild waterbirds are often identified as possible sources for poultry infection. Therefore, it is important to understand the ecological and environmental factors that directly influence infection dynamics in wild birds, as these factors may thereby indirectly affect outbreaks in poultry. In Australia, where large parts of the country experience erratic rainfall patterns, intense rainfalls lead to wild waterfowl breeding events at temporary wetlands and increased proportions of immunologically na?ve juvenile birds. It is hypothesized that after breeding, when the temporary wetlands dry, increasing densities of immunologically na?ve waterbirds returning to permanent water bodies might strongly contribute to AIV prevalence in wild waterfowl in Australia. Since rainfall has been implicated as an important environmental driver in AIV dynamics in wild waterbirds in southeast Australia and wild waterbirds are identified globally to have a role in virus spillover into poultry, we hypothesise that rainfall events have an indirect effect on AIV outbreaks in poultry in southeast Australia. In this study we investigated this hypothesis by examining the correlation between the timing of AIV outbreaks in poultry in and near the Murray-Darling basin in relation to temporal patterns in regional rainfall since 1970. Our findings support our hypothesis and suggest that the risk of AIV outbreaks in poultry increases after a period of high rainfall, with peak AIV risk two years after the onset of the high-rainfall period. This is presumably triggered by increased rates of waterbird breeding and consequent higher proportions of immunologically na?ve juvenile waterbirds entering the population directly after major rainfall events, which subsequently aggregate near permanent water bodies when the landscape dries out.