Influenza A virus (IAV) contains a genome with eight single-stranded, negative-sense RNA segments that encode 17 proteins. During its assembly, all eight separate viral RNA (vRNA) segments are incorporated into virions in a selective manner. Evidence suggested that the highly selective genome packaging mechanism relies on RNA-RNA or protein-RNA interactions. The specific structures of each vRNA that contribute to mediating the packaging of the vRNA into virions have been described and identified as packaging signals. Abundant research indicated that sequences required for genome incorporation are not series and are varied among virus genotypes. The packaging signals play important roles in determining the virus replication, genome incorporation and genetic reassortment of influenza A virus. In this review, we discuss recent studies on influenza A virus packaging signals to provide an overview of their characteristics and functions.