Current influenza vaccines provide hemagglutinin (HA) strain-specific protection. To improve cross protection, we engineered replication-competent influenza A virus to express tandem repeats of heterologous M2 extracellular (M2e) domains in a chimeric HA. M2e epitopes conjugated to HA glycoproteins (M2e4x-HA) were found to be expressed on the surfaces of a replicable influenza virus as examined by electron microscopy. The recombinant influenza virus containing M2e4x-HA was moderately attenuated but superior to the parental virus in inducing M2e specific antibodies without compromising HA immunogenicity. Recombinant influenza virus immune mice showed better cross protection than parental virus immune mice. Immune sera from the mice with inoculation of live recombinant influenza virus expressing M2e4x-HA were effective in conferring protection against H1, H3, and H5 subtype influenza viruses. This study indicates that recombinant influenza virus expressing conserved protective epitopes in an HA chimeric form can provide a new approach for improving the efficacy of influenza vaccines.